
7 The Waveform Channel

The waveform transmitted by the digital demodulator will be corrupted by
the channel before it reaches the digital demodulator in the receiver. One
important part of the channel is the noise. In continuous time, this random
noise is viewed as a random process. So, we first provide some introduction
to random processes.
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Figure 33: Additive noise channel

7.1 Random Processes

A random process is simply an infinite collection of random variables. These
random variables are usually indexed by time. So, the obvious notation for
random process would beX(t). As in the signals-and-systems class, time can
be discrete or continuous. When time is discrete, it may be more appropriate
to use X1, X2, . . . or X[1], X[2], X[3], . . . to denote a random process.

Example 7.1. Sequence of results (0 or 1) from a sequence of Bernoulli
trials is a discrete-time random process.

Example 7.2. Gaussian Random Processes: A random process X(t) is
Gaussian if for all positive integers n and for all t1, t2, . . . , tn, the random
variables X(t1), X(t2), . . . , X(tn) are jointly Gaussian random variables.

7.3. For random variable, two important statistics are the mean and the
standard deviation (or the variance). For random processes, two important
statistics are the mean function and the auto-correlation function (or the
power spectral density function).
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Definition 7.4. At any particular time t, a random process is simply a
random variable and hence we can also find its expected value in the usual
way. The mean function mX(t) captures these expected values as a de-
terministic function of time:

mX(t) = E [X(t)] .

7.1.1 Autocorrelation Function and WSS

One of the most important characteristics of a random process is its auto-
correlation function, which leads to the spectral information of the random
process. The frequency content process depends on the rapidity of the am-
plitude change with time. This can be measured by correlating the values
of the process at two time instances tl and t2.

Definition 7.5. Autocorrelation Function : The autocorrelation func-
tion RX(t1, t2) for a random process X(t) is defined by

RX(t1, t2) = E [X(t1)X(t2)] .

Example 7.6 (Randomly Phased Sinusoid). Consider a random process

X(t) = 5 cos(7t+ Θ)

where Θ is a uniform random variable on the interval (0, 2π).

mX(t) = E [X(t)] =

∫ +∞

−∞
5 cos(7t+ θ)fΘ(θ)dθ

=

∫ 2π

0

5 cos(7t+ θ)
1

2π
dθ = 0.

and
RX(t1, t2) = E [X(t1)X(t2)]

= E [5 cos(7t1 + Θ)× 5 cos(7t2 + Θ)]

=
25

2
cos (7(t2 − t1)) .

Definition 7.7. A random process whose statistical characteristics do not
change with time is classified as a stationary random process. For a sta-
tionary process, we can say that a shift of time origin will be impossible to
detect; the process will appear to be the same.
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Example 7.8. The random process representing the temperature of a city is
an example of a nonstationary process, because the temperature statistics
(mean value, for example) depend on the time of the day.

On the other hand, the noise process is stationary, because its statistics
(the mean ad the mean square values, for example) do not change with time.

7.9. In general, it is not easy to determine whether a process is stationary.
In practice, we can ascertain stationary if there is no change in the signal-
generating mechanism. Such is the case for the noise process.

A process may not be stationary in the strict sense. A more relaxed
condition for stationary can also be considered.

Definition 7.10. A random processX(t) is wide-sense stationary (WSS)
if

(a) mX(t) is a constant

(b) RX(t1, t2) depends only on the time difference t2 − t1 and does not
depend on the specific values of t1 and t2.

In which case, we can write the correlation function as RX(τ) where τ =
t2 − t1.

• One important consequence is that E
[
X2(t)

]
will be a constant as well.

Example 7.11. The random process defined in Example 7.6 is WSS with

RX(τ) =
25

2
cos (7τ) .

7.12. Most information signals and noise sources encountered in commu-
nication systems are well modeled as WSS random processes.
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Example 7.13. White noise process is a WSS process N(t) whose

(a) E [N(t)] = 0 for all t and

(b) RN(τ) = N0

2 δ(τ).

See also 7.19 for its definition.

• Since RN(τ) = 0 for τ 6= 0, any two different samples of white noise,
no matter how close in time they are taken, are uncorrelated.

Example 7.14. [Thermal noise] A statistical analysis of the random motion
(by thermal agitation) of electrons shows that the autocorrelation of thermal
noise N(t) is well modeled as

RN(τ) = kTG
e−

τ
t0

t0
watts,

where k is Boltzmann’s constant (k = 1.38× 10−23 joule/degree Kelvin), G
is the conductance of the resistor (mhos), T is the (ambient) temperature
in degrees Kelvin, and t0 is the statistical average of time intervals between
collisions of free electrons in the resistor, which is on the order of 10−12

seconds. [11, p. 105]

7.1.2 Power Spectral Density (PSD)

An electrical engineer instinctively thinks of signals and linear systems in
terms of their frequency-domain descriptions. Linear systems are charac-
terized by their frequency response (the transfer function), and signals are
expressed in terms of the relative amplitudes and phases of their frequency
components (the Fourier transform). From the knowledge of the input spec-
trum and transfer function, the response of a linear system to a given signal
can be obtained in terms of the frequency content of that signal. This is
an important procedure for deterministic signals. We may wonder if similar
methods may be found for random processes.

In the study of stochastic processes, the power spectral density function,
SX(f), provides a frequency-domain representation of the time structure of
X(t).
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Figure 34: Motivation for the defining formula of the power spectral density for determin-
istic signal.

You may recall that not all functions of time have Fourier transforms. For
many functions that extend over infinite time, the Fourier transform does
not exist. Sample functions x(t) of a stationary stochastic process X(t)
are usually of this nature. To work with these functions in the frequency
domain, we consider XT (t) which is the truncated version of X(t). It is
identical to X(t) for −T ≤ t ≤ T and 0 elsewhere:

XT (t) =

{
X (t) , −T ≤ t ≤ T,

0, otherwise.

}
F−−⇀↽−−
F−1
F {XT} (f)

We use F{XT}(f) to represent the Fourier transform of XT (t) evaluated at
the frequency f .

Definition 7.15. Consider a WSS process X(t). The power spectral
density (PSD) is defined as

SX(f) = lim
T→∞

1

2T
E
[
|F{XT}(f)|2

]
= lim

T→∞

1

2T
E

[∣∣∣∣∫ T

−T
X(t)e−j2πftdt

∣∣∣∣2
]

We refer to SX(f) as a density function because it can be interpreted as the
amount of power in X(t) in the small band of frequencies from f to f + df .
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7.16. Wiener-Khinchine theorem : the PSD of a WSS random process
is the Fourier transform of its autocorrelation function:

SX(f) =

∫ +∞

−∞
RX(τ)e−j2πfτdτ

and

RX(τ) =

∫ +∞

−∞
SX(f)ej2πfτdf.

One important consequence is

RX(0) = E
[
X2(t)

]
=

∫ +∞

−∞
SX(f)df.
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Figure 35: Wiener-Khinchine theorem for different types of signals.

Example 7.17. For the thermal noise in Example 7.14, the corresponding
PSD is SN(f) = 2kTG

1+(2πft0)2 watts/hertz.

7.18. Observe that the thermal noise’s PSD in Example 7.17 is approx-
imately flat over the frequency range 0–10 gigahertz. As far as a typical
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communication system is concerned we might as well let the spectrum be
flat over all frequency, i.e.,

SN(f) =
N0

2
watts/hertz,

where N0 is a constant; in this case N0 = 4kTG.

Definition 7.19. Noise that has a uniform spectrum over the entire fre-
quency range is referred to as white noise. In particular, for white noise,

SN(f) ≡ N0

2
watts/hertz,

• The factor 2 in the denominator is included to indicate that SN(f) is
a two-sided spectrum.

• The adjective “white” comes from white light, which contains equal
amounts of all frequencies within the visible band of electromagnetic
radiation.

• The average power of white noise is obviously infinite.

(a) White noise is therefore an abstraction since no physical noise pro-
cess can truly be white.

(b) Nonetheless, it is a useful abstraction.

◦ The noise encountered in many real systems can be assumed to
be approximately white.

∗ This is because we can only observe such noise after it has
passed through a real system, which will have a finite band-
width. Thus, as long as the bandwidth of the noise is sig-
nificantly larger than that of the system, the noise can be
considered to have an infinite bandwidth.

◦ As a rule of thumb, noise is well modeled as white when its
PSD is flat over a frequency band that is 35 times that of the
communication system under consideration. [11, p 105]
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106 Probability theory, random variables and random processes�
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�Fig. 3.11 (a) The PSD (Sw(f )), and (b) the autocorrelation (Rw(τ )) of thermal noise.
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L

R�Fig. 3.12 A lowpass filter.

Finally, since the noise samples of white noise are uncorrelated, if the noise is both white
and Gaussian (for example, thermal noise) then the noise samples are also independent.

Example 3.7 Consider the lowpass filter given in Figure 3.12. Suppose that a (WSS)
white noise process, x(t), of zero-mean and PSD N0/2 is applied to the input of the filter.

(a) Find and sketch the PSD and autocorrelation function of the random process y(t) at the
output of the filter.

(b) What are the mean and variance of the output process y(t)?

Solut ion

(a) Since x(t) is WSS white noise of zero-mean and PSD N0/2, Sx(f ) = N0/2, for all f .
The transfer function of the lowpass filter is:

H(f ) = R

R+ j2π fL
= 1

1+ j2π fL/R
. (3.94)

Figure 36: (a) The PSD (SN(f)), and (b) the autocorrelation (RN(τ)) of noise. (Assume
G = 1/10 (mhos), T = 298.15 K, and t0 = 3× 10−12 seconds.) [11, Fig. 3.11]

Theorem 7.20. When we input X(t) through an LTI system whose fre-
quency response is H(f). Then, the PSD of the output Y (t) will be given
by

SY (f) = SX(f)|H(f)|2.
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7.2 Equivalent Vector Channel

7.21. Recall that we are considering the digital modulator/demodulator
part shown in Figure 37.

Digital

Modulator

 N t

 R t S t
W

Digital

DeModulator Ŵ

Figure 37: Digital modulator/demodulator and the waveform channel

7.22. The input of the modulator is the (random) message (index) W ∈
{1, 2, . . .M}.

• Prior probabilities: pj = P [W = j].

• Each message is mapped to a waveform to be transmitted over the
waveform channel as the transmitted waveform S(t).

◦ There are M possible messages. So, there are M waveforms:

s1(t), s2(t), . . . , sM(t).

The (symbol) energy of the j-th waveform is Ej = 〈sj (t) , sj (t)〉.

The average energy per symbol is Es =
M∑
j=1

pjEj.

◦ Transmission of the message W = j is done by inputting the cor-
responding waveform sj(t) into the channel.
Therefore, the probability that the waveform sj(t) is selected to
be transmitted is the same as the probability that the jth message
occurs:

pj = P [W = j] = P [S (t) = sj (t)]

7.23. The noise N(t) in the channel is assumed to be additive. So, the
receiver observes R(t) = S(t) + N(t). The noise is also assumed to be
independent from the transmitted waveform S(t).
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7.24. Conversion of Waveform Channels to Vector Channels:

(a) GivenM waveforms s1(t), s2(t), . . . , sM(t), first find (possibly by GSOP)
the K orthonormal basis functions φ1 (t) , φ2 (t) , . . . , φK(t) for the space
spanned by s1(t), s2(t), . . . , sM(t).

(b) The basis gives the vector representations s(1), s(2), . . . , s(M) for the

waveforms s1(t), s2(t), . . . , sM(t), respectively. Note that s
(j)
i , the ith

component of the vector s(j), comes from the inner-product:

s
(j)
i = 〈sj (t) , φi (t)〉 .

(c) The vector representations of the received waveform and the noise can
then be calculated in a similar manner based on the derived basis.

(d) In summary, we convert the waveforms S(t), R(t), and N(t) to their
corresponding vectors S, R, and N by performing inner-product with
the orthonormal basis functions: the i-th component of the vector is
the inner-product between the waveform and φi(t). In particular,

Si = 〈S (t) , φi (t)〉 , Ri = 〈r (t) , φi (t)〉 , Ni = 〈N (t) , φi (t)〉 .

𝑠 𝑡 , 𝑠 𝑡 , … , 𝑠 𝑡

1

Vector Channel:

Waveform Channel: Find orthonormal basis 
(possibly by GSOP): 
𝜙 𝑡 , 𝜙 𝑡 , … , 𝜙 𝑡

𝑅 𝑡 𝑆 𝑡 𝑁 𝑡

𝐑⇀ 𝐒⇀ 𝐍⇀

 𝐬⇀ , 𝐬⇀ ,… , 𝐬⇀=
𝑆 𝑡 , 𝜙 𝑡
𝑆 𝑡 , 𝜙 𝑡

⋮
𝑆 𝑡 , 𝜙 𝑡

=
𝑁 𝑡 ,𝜙 𝑡
𝑁 𝑡 , 𝜙 𝑡

⋮
𝑁 𝑡 , 𝜙 𝑡

𝑅 𝑡 , 𝜙 𝑡
𝑅 𝑡 , 𝜙 𝑡

⋮
𝑅 𝑡 , 𝜙 𝑡

=

Figure 38: Conversion of Waveform Channels to Vector Channels

Remarks:

• We use the letter K instead of the letter N to represent the number
of orthonormal basis functions to avoid the confusion with the random
noise which is also denoted by the letter N .
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• This conversion is the same as what we did when we convert waveforms
to vectors via the GSOP. (See Eq. (38) and Figure 27a.) When sj(t)
is transmitted, the corresponding “transmitted” vector will be s(j).

Example 7.25. Figure 39 illustrates how the message vectors in quaternary
QAM are corrupted by additive noise.
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Figure 39: Quaternary QAM: con-
stellation and samples of the re-
ceived vectors (which are cor-
rupted by additive noise)

7.26. Some facts that followed from the conversion:

(a) For R(t) = S(t) +N(t), we have R = S + N.

(b) From the perspective of designing optimal demodulator, the waveform
channel and the vector channel are “equivalent”.

(c) Ej = 〈sj (t) , sj (t)〉 =
〈
s(j), s(j)

〉
.

(d) Prior probabilities:

pj = P [W = j] = P [S (t) = sj (t)] = P
[
S = s(j)

]
(e) S |= N

(f) When N(t) is a white noise process with SN(f) ≡ N0

2 (across all fre-
quencies under consideration, we have

(i) E [Nj] = 0, and

(ii) E [NiNj] =

{
N0/2, i = j,
0, i 6= j.

In other words, the noise components are uncorrelated and

E
[
N 2
i

]
= VarNi =

N0

2
.
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